Corrigé proposé par M. Carrot

CCP PC 2019 - Corrigé

Exercice 1 : Polynéme de Laguerre et méthode de quadrature de Gauss

Partie I - Produit scalaire sur R,,[X]

I.1 -
1.

I.2 -

Geénéralités
et P(t)Q(t)e™" est continue sur [0, 1], donc intégrable sur [0, 1].
ot P(t)Q(t)e " est continue sur [1,+oo|.
1
—t _ . . ,
P#)Q(t)e " = t_}(J)roo (t2> par croissances comparées.
1
Ort— 72 est intégrable sur [1, +oo[ (Riemann et 2 > 1), donc, par comparaison, t — P(t)Q(t)e™" est intégrable sur

[1, 400l
t > P(t)Q(t)e " est donc intégrable sur R, donc, en particulier, I'intégrale définissant (P|Q) est convergente

. e L’application (.|.) est bien définie & valeurs dans R.

e Pour tout (P, Q) € R, [X]?,
+o0 Foo
(PIQ) = Pwmmﬂwzé QU)P(t)e"dt = (QIP),

0

donc (.|.) est symétrique.
e Pour tout (P, @, R) € R,[X]3, pour tout A € R,

“+o0
(AP + Q|R) = /O (AP(t) + Q(t) R(t)e—"dt

—+oo —+oo
= )\/ P(t)R(t)e "dt + / Q(t)R(t)e 'dt (par linéarité de I'intégrale convergente)
0 0
— \(PIR)+ (QIR),

donc (.].) est linéaire & gauche.

e (.].) est linéaire & gauche et symétrique, donc bilinéaire.

e Pour tout P € R, [X], pour tout ¢ € Ry, P*(t)e”* > 0.

D’ou, par positivité de 'intégrale (qui converge et "+oo > 0"), on a :

“+oo
(P|P) = P3(t)e~tdt > 0.
0
(.].) est donc positif.
+oo
e Enfin, pour tout P € R,[X], si (P|P) =0, alors P%(t)e~tdt = 0.
0

“+ o0

Or t — P?(t)e™" est continue et positive sur Ry, "0 < 400" et P%(t)e *dt converge, donc pour tout t € R,
0

P%(t)e™' =0, et donc P%(t) = 0, puis P(t) = 0.

Le polynome P a donc une infinité de racines (tous les éléments de R, ), donc P = 0.
(.|.) est donc bien défini.

e (.|.) définit donc bien un produit scalaire sur R, [X].

Calcul d’un produit scalaire

. Posons u(t) = t*, u/(t) = kt* 71 o/ (t) = e7!, v(t) = —e 7.

u et v sont de classe C* sur [0, +o00].
u(t)v(t) = —tFe™" — 0 par croissances comparées.
t——+o0

+oo “+o0
Enfin, les deux intégrales / u(t)v'(t)dt et / o' (t)v(t)dt sont convergentes.
0 0

On peut donc intégrer par parties et on a :
+oo +oo
/ the=tdt = [tFe !> —|—/ kth—letdt
0 0

—+oo
=0+ k:/ tF=le tdt.
0



4. Montrons par récurrence que, pour tout k € [0,n], (X¥[1) = k! (HR},)
—+oo

Initialisation : Pour k =0, (X°[1) = (1|1) = / e 'dt =1 (cours), donc on a bien H Ry.
0

Hérédité : Soit k € [0,n — 1] et supposons H Ry, vérifiée.

Alors, d’aprés la question précédente, comme k + 1 € [1,n], on a

+o0 too
(Xk+1|1):/ t’f“e—fdt:(kﬂ)/ the~tdt = (k4 1)(X*|1) = (B DR = (B+ 1)L
0 0 k

On a bien H Ry 1.
Conclusion : D’oui, par récurrence, pour tout k € [0,n], (X*|1) = k.

Partie IT - Construction d’une base orthogonale

I1.1 - Propriétés de ’application «

5. @ Pour tout P € R,[X], a(P) = XP"” + (1 — X)P’ est un polynome.
De plus, comme deg(P’) < deg(P)—1<n—1et deg(P")<n—2,0na

deg(a(P)) < max(deg(XP"),deg((1 — X)P")) <max(1+n—2,1+n—1) <mn,

donc a(P) € R,[X]. On a donc a : R, [X] — R,[X].
e De plus, pour tout (P, Q) € R,[X]?, pour tout \ € R,

aAP+Q)=X(AP+Q)"+(1-X)A\P+Q)
=XAP"+Q")+ (1 - X)A\P' + Q") (par linéarité de la dérivation)
=AXP' +XQ"+MN1-X)PP+(1-X)Q' =XXP'"+(1-X)P)+(XQ"+(1-X)Q)
= Aa(P) +a(Q),

donc « est une application linéaire.
e « est donc bien un endomorphisme de R, [X].

6. Onaca(l)=X(1)"+(1-X)(1)' =0, a(X)=X(X)"+ (1 - X)(X) =1— X et, pour tout k € [2,n],
a(XP) = X(X® + (1 - X)(X*) = Xk(k—1DX*2 + (1 - X)kXF ! = —kXF 4 p2XFL

Rq : On remarque que cette formule est encore valable pour k = 1, donc on a,

VEk € [1,n], a(X*) = —kX* +E2XF1 et a(1)=0.

On a donc
0 1 0 0
0 -1 22
Mat x, . xm(a) = Mat,  xn(a(l),...,a(X")) = |+ = - 0
: —(n—1) n?
0 o .- 0 —n

7. Comme Mat; x, .. x~)(c) est triangulaire supérieure, son spectre se lit sur la diagonale. On a donc
Sp(a) = Sp (Matq x,... x) (@) = {—k|k € [0,n]}.

I1.Vecteurs propres de ’application «

On fixe un entier k € [0, n].

8. Comme « est un endomorphisme de R,,[X] ayant n + 1 valeurs propres, toutes ces valeurs propres sont simples.
—k est donc valeur propre simple de «, donc dim E_(a) = dim(ker(a + kldg, [x])) = 1.

9. e Soit (Q) une base de ker(a + kldg, x]) avec Qr # 0.
Notons a le coefficient dominant de @ (non nul car @, # 0).

1
Alors P, = =@, est un polynéme ayant un coefficient dominant égal a 1.
a
1
De plus, P, = an € Vect (Q) = ker(a + kldg ,[x7), donc
(a + kIan[X])(Pk) =0& a(Pk) + kP, =0< Oé(Pk) = —kP;.

Il existe donc bien un polynome Py, € R,,[X], de coefficient dominant égal & 1, vérifiant a(Py) = —kP;.
e Supposons qu'il existe un autre polynoéme Ry € R, [X], de coefficient dominant égal a 1, vérifiant «(Py) = —kP.



10.

11.

I1.3

1
Alors Ry, € ker(a + kldg,[x]) = Vect (Qr) = Vect (an> = Vect (Py), donc il existe A € R tel que Ry = APj.

De plus, les deux polynomes Py et Ry ont le méme coefficient dominant (1), donc A = 1, et, par suite, Ry = Pg. On a
donc bien 'unicité.
o Il existe donc bien un unique polynome Py € R, [X], de coefficient dominant égal & 1, vérifiant a(Py) = —kPy.

Soit d le degré de Py, avec d € [0,n] car Py est non nul et Py, € R, [X].
d

Il existe donc (ag, ..., aq) € R4 tels que Py, = ZaiXi (et ag =1).

i=0
Alors on a :

d
a(Py) = Zaia(Xi) (par linéarité de )
i=0

d
=0+ Z a; (—iXi + @'2Xi_1) (d’apreés la question 6)
i=1

d d
= E —ia; X' + E ai’L'zX’L_l.
=1 1=0

Comme on a par ailleurs a(Py) = —kPj (car P, € ker(a + kldg,[x])), on obtient, en identifiant les coefficients
dominants :
—dag = —kag < —d=-k&ed=k,

aq=—
donc Py est de degré k.

e On a a(l) =0 = —0(1) et le coefficient dominant de 1 est 1, donc, par unicité de Py, on a Py = 1.
eOnaa(X)=-X+1,donca(X —-1)=a(X)—a(l)=—-X+14+0=—(X —1), et le coefficient dominant de X —1
est 1, donc, par unicité de Pj,ona P, = X — 1.

e Le coefficient dominant de X? —4X + 2 est 1 et

a(X? —4X +2) = a(X?) —4a(X) +2a(1) = —2X? +4X —4(-X +1)+ 0= —2X2 +8X —4 = —2(X? —4X +2),

donc, par unicité de Py, on a P, = X2 —4X + 2.

- Orthogonalité de la famille (P,..., P,)

Soit (P, Q) € R,[X]%

12.

13.

e Par linéarité de l'intégrale convergente,

+oo +oo +oo
@PIQ) = [ PO+ - oP Qe d= [P0+ Peeme - [ P,
0 0 0
ol toutes ces intégrales convergent d’apres la question 1.
e Posons /(t) = tP"(t) + P'(t), u(t) = tP'(t), v(t) = Q(t)e ", v'(t) = Q' (t)e " — Q(t)e™".

u et v sont de classe C' sur R,
u(t)o(t) = tP'(t)Q(t)e™" v 0 par croissances comparées.
—+00

Enfin, toutes les intégrales convergent (toujours d’aprés la question 1).
On peut donc intégrer par parties et on a :

+o0 +oo
[ e+ Paneweta = [tPoeme 1,7 - [ 0@ o - e i
0 - 0 -
=0—-0- / tP' ()Q' (t)e tdt + / tP'(t)Q(t)e~'dt (par linéarité de l'intégrale),
0 0
donc
+o00 +o00
@PI@) = [ P o+ PoRDe - [ Qe
0 0
“+o0
_ / P (1)Q' (t)etdt.
0
Par symeétrie des roles de P et @), on a aussi

+oo +o00
(a(Q)|P) = — /0 tQ'(t)P'(t)e™"dt = — /O tP'(t)Q' (t)e~tdt,

donc, par symétrie du produit scalaire,

+oo
(a(P)|Q) = */0 tP'(t)Q'(t)e™"dt = ((Q)|P) = (Pla(Q)).



14.

e Pour tout (i, ;) € [0,n]?,

((P)|Pj) = (=iFi|Pj) = —i(Pi| P))
et (a(B)|F;) = (Pila(Fy)) = (Pi| = jPj) = —j(Pi| P)),

donc, d’aprés la question 13, —i(P;|P;) = —j(P;|P;), donc (i — j)(P;|P;) = 0, donc, si i # j, on a (P;|P;) =0

La famille (P,,..., P,) est donc orthogonale.

e De plus, elle est composée de vecteurs non nuls (car le coefficient dominant de ces polynomes vaut 1), donc cette
famille est libre.

Comme elle est libre et composée de n + 1 polyndomes de R,,[X], espace vectoriel de dimension n + 1, c’est une base de
R, [X].

e La famille (P,,..., P,) est donc bien une base orthogonale de R, [X].

Partie III - Méthode de quadrature de Gauss

15.

16.

17.

+oo
Remarquons déja que, pour tout k € [0, n], / the=tdt = (1| X*) = k! d’aprés la question 4.
0

Si un n-uplet (A, ..., \,) vérifie (x), alors pour tout k € [0,n], en posant P(X) = X* € R,,[X], on doit avoir

/+ e~tdt = Zmz, ie k!:imf.
0 i=1

Le n-uplet (A1,...,A,) € R" vérifie donc bien :

1 1 1 A1 0!
z1 T2 Zn, A2 1!
it gnt ant An (n—1)!

Réciproquement, si n-uplet (A1,...,\,) € R" vérifie

1 1 1 A1 0!
T To B Ao 1!
=t gt zn 1 An (n—1)!

n 400
alors pour tout k € [0,n], la ligne k de ce systéme donne Z )\ixf =kl = / thetdt.
— 0
" i=1
D’o1ui, pour tout polynéme P = Zaka,
k=0

n

i NiQpx: = i ak Z /\izf
k=0 =

1 k=0 =1

"
M=

n
i=1

3

3

3

+o0 +oo 1
ak/ thetdt = Z apt®etdt (par linéarité de l'intégrale)
0 0

k=0
+oo
= / P(t)e tdt.
0
On a donc bien (x).
1 1 e 1
1 o PN Ty
La matrice . . . est une matrice de Van der Monde, donc inversible car les x; sont deux & deux
¥—1 zg—l xzfl
distincts.
1 1 e 1 A1 0!
T To R Ao 1!
Le systéme . . . . = . est donc de Cramer, donc il admet un unique n-uplet
A An (n—1)!
solution. D’ou 'unicité de (Aq,...,\,) vérifiant (x).

e Soit P = P?2. Alors deg(P) = 2deg(P,) = 2n, donc P € Ry, [X].
e De plus, t — P(t)e™" = P2(t)e”" est continue, positive et non nulle sur R* (car P,, non nul, n’a pas une infinité de



racines onc ar Stricte positivite de l'integrale < 0
ines), donc, par stricte positivité de I'intégrale ("0 < +o00"),

n
e Enfin, comme z; est racine de P, pour tout i € [1,n], z; est aussi racine de P = P2 donc Z AP (x;)

donc on a bien

0

—+o00

“+oo
P(t)edt > 0.
0

P(t)e_tdt 7’5 0= i )\ZP(ZL‘Z)
i=1

i=1



